

PXF Series (dual output) DC-DC Converters

The PXF is a DC-DC converter which provides a regulated output at power levels up to 40 watts. It accepts a wide range DC input. The converter may be operated with or without the input and output pins grounded.

Table of Contents

General Satety Instructions
Fusing
Installation Method
Soldering and Cleaning
Pin Assignments
Block Diagram
EMI Filter (Optional)
Outline Drawing
Minimum Load
Remote On-Off Control
Thermal Consideration
External Trim
Trim Tables

General Safety Instructions

These products are designed to be PCB mounted and for use within other equipment or enclosures. For safe installation and operation, carefully follow the instructions below:

- Do not install, test, or operate the products near water or spill liquid on them.
- 2. Do not operate these products unless they are securely fastened.
- 3. These products must be installed in a restricted access location accessible to authorized personnel only.
- These products must be professionally installed in accordance with the prevailing electrical wiring regulations and safety standards.
- 5. The output power taken from the unit must not exceed the ratings stated in the catalog datasheet.
- Ensure adequate ventilation is provided to allow air to circulate.
- 7. This product has functional insulation between input and output and therefore the DC source to this product must be reinforced or double insulated to the AC input in accordance with IEC/EN 60950-1 to achieve SELV output.

Fusing

An external ceramic sand-filled fuse is needed for protection.

12V input ~ 250V, F8A, HBC

24V input ~ 250V, F5A, HBC

48V input ~ 250V, F5A, HBC

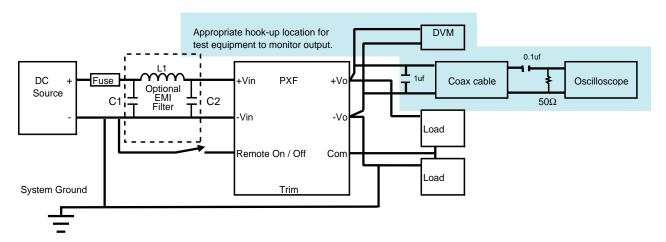
Installation Method

The unit can be mounted in any direction. Position single or multiple units with proper spacing to allow for adequate air ventilation. The case temperature of each unit should not exceed the temperature range as noted in the data sheet.

Avoid placing PCB traces for the DC input and DC output directly under the unit to limit the possibility of unwanted conducted noise.

Soldering and Cleaning

Flow soldering: 260±10°C less than 15 seconds Soldering iron: 370±10°C less than 5 seconds


Note: The pins of this module are coated with Tin. To assure the solder-ability, modules should be kept in their original shipping containers to provide adequate protection. Also, the storage environment should be controlled to prevent oxidation of the pins.

Following wave solder, the converters should be given an opportunity to cool to within 10°C of the cleaning solution temperature. Cleaning while at a higher temperature may increase the risk of vacuum absorption of the solution into the converter between the pins and potting material during cooling.

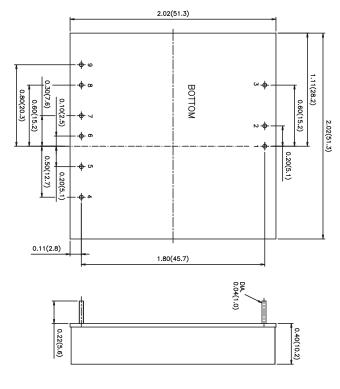
It is recommended that during the wash process, the date code screening is protected to avoid erasure.

Block Diagram

EMI Filter (Optional)

Input filter components (C1, C2, L1) are used to help meet special conducted emissions requirements for the PXF product. These components should be mounted as close as possible to the DC-DC converter; and all leads should be minimized to decrease radiated noise.

	C1	L1	C2
PXF40	1μF, MLC	5.5μH	39μF 100V
			Electrolytic


Minimum Load

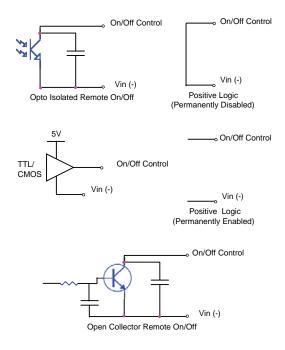
A 10% (of full load) minimum load is required on each output to meet the performance specifications. The unit does not maintain regulation and operate properly under a no-load condition.

Pin Assignments

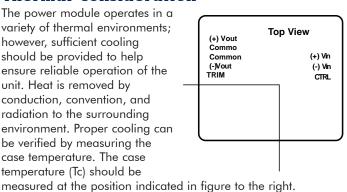
Pin	Connection	Positive Connection
1	+ Input	+ Input
2	- Input	- Input
3	Remote On / Off	Remote On/ Off
4	No Pin	3.3V
5	+Vo	3.3V RTN (com)
6	Com	NC
7	Com	NC
8	- Vo	5V
9	Trim	5V RTN (com)

Outline Drawing

ALL DIMENSIONS IN INCHES(mm) PIN PITCH TOLERANCE $\pm 0.014(0.35)$ Tolerance : $x.xx\pm0.02(x.x\pm0.5)$ $x.xxx\pm0.01(x.xx\pm0.25)$


Pin Diameter: 1mm (0.04")

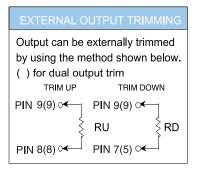
Positive Logic


To turn the module on and off, the user must supply a switch (or equivalent circuit below) to control the voltage between the on/off terminal $V_{\text{on/off}}$ and the $V_{i(\text{--})}$ input terminal. With an open circuit the module is normally on. To turn the module off the voltage on the V_{on/off} pin needs to be 0V-1.2V. The maximum current I_{on/off} should be limited to less than 100μ A

Below are five possible circuits for driving the ON/OFF Pin:

Thermal Consideration

The power module operates in a variety of thermal environments; however, sufficient cooling should be provided to help ensure reliable operation of the unit. Heat is removed by conduction, convention, and radiation to the surrounding environment. Proper cooling can be verified by measuring the case temperature. The case temperature (Tc) should be


When operating the module, adequate cooling must be provided to maintain the case temperature at or below 100°C. Maintaining a lower temperature will yield higher reliability of the device. Optimum cooling is obtained with forced convection.

Flow Rate	Θ
Convection*	9.2°C/W
100LFM	-
200LFM	6.5
300LFM	5.3
400LFM	4.0
500LFM	3.5
Heatsink**	8.5 Convection
	2.8 500LFM
* Mounted vertically	
** Optional heatsink 7	'G0026A (includes adhesive pad)

External Trim (output voltage adjustment)

Output voltage set point adjustment allows the user to increase or decrease the output voltage set point of a module. This is accomplished by connecting an external resistor between the TRIM pin and either the (+)Vout or (-)Vout pins. With an external resistor between the TRIM and (+) Vout pin, the output voltage set point decreases. With an external resistor between the TRIM and (-)Vout pin, the output voltage set point increases.

See the following pages for values.

PXF40	Dual	12V									
Trim down	1	2	3	4	5	6	7	8	9	10	%
Vout=	23.760	23.520	23.280	23.040	22.800	22.560	22.320	22.080	21.840	21.600	Volts
RD=	273.442	123.016	72.874	47.803	32.760	22.732	15.568	10.196	6.017	2.675	KOhms
Trim up	1	2	3	4	5	6	7	8	9	10	%
Vout=	24.240	24.480	24.720	24.960	25.200	25.440	25.680	25.920	26.160	26.400	Volts
RU=	218.210	98.105	58.070	38.052	26.042	18.035	12.316	8.026	4.690	2.021	KOhms
PXF40 Dual 15V											
Trim down	1	2	3	4	5	6	7	8	9	10	%
Vout=	29.700	29,400	20 100	00 000	00.500	00 000	07.000	07 /00	27 200	27.000	3.4.1.
	27.700	29.400	29.100	28.800	28.500	28.200	27.900	27.600	27.300	27.000	Volts
RD=	337.712	152.022	90.126	59.178	40.609	28.200	19.387	12.756	7.598	3.471	Volts KOhms
RD= Trim up											
		152.022	90.126	59.178	40.609	28.230		12.756	7.598	3.471	KOhms